DOI: http://dx.doi.org/10.18782/2320-7051.7480

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **7 (3):** 335-340 (2019)

Research Article

Cultural Study of Fire-fang Isolates of Mushroom Compost

Prerna Dobhal and Sarvesh Kumar Mishra^{*}

Department of Plant Pathology, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand *Corresponding Author E-mail: drskmishra1972@gmail.com Received: 8.05.2019 | Revised: 3.06.2019 | Accepted: 7.06.2019

ABSTRACT

Six individual colonies of fire-fang assigned as FI_1 , FI_2 , FI_3 , FI_4 , FI_5 and FI_6 were isolated from the four samples of hot compost having 55°C- 60°C temperature. Each one of 1st three samples was drawn at the end of turning 1st (FI₁), turning 2nd (FI₂), turning 3rd (FI₃ and FI₄) of phase I composting. Fourth compost sample represents phase II composting (FI₅ and FI₆). All isolates were found Gram (+) and appeared in white, dry and rough to smooth surface on actinomycetes isolation agar (AIA) medium but varied in shape from circular (FI₁, FI₃ and FI₆) to irregular (FI₂, FI₄ and FI₅) and diffusible pigmentation of pale yellow (FI₁), yellow (FI₅ and FI₆), dark brown (FI₂) and brown (FI₃ and FI₄). The effect of temperature and media on the growth of above isolates was further evaluated with the results that temperature 35°C±1 did not support any growth of above isolates. Temperature 55°C±1has obviously increased average diametric growth of all isolates of fire-fang by 122.61% against temperature 45°C±1 at 10th DAI. Starch ammonium agar (SAA) supported 9.83% more average diametric growth of all isolates of fire-fang trianget isolation agar (AIA) medium. Though, the interactions FI₂*55°C, FI₃*55°C and FI₂*KM, FI₃*AIA were appeared best to have highest average growth of thermophilic isolates.

Key words: Mushroom compost, Agaricus bisporus, Fire-fang, media, Temperature, Thermophilic actinomycetes.

INTRODUCTION

Fire-fang is a greyish to whitish speckled presence of thermophilic actinomycetes usually dominated with *Thermomonospora curvata*, *T. alba* and *T. fusca*, *T. chromogena*¹², *Thermoactinomyces thalophilus* and *T. vulgaris*^{4&6} in the mushroom compost. That start grows spontaneously from 45° C in phase I compost to 65-70°C in phase II compost¹⁰. More numbers of colonies forming units of fire-fang are developed at 45° C but decline gradually with increased temperature by 55° C or more³. Fire-fang developed in the mushroom compost is found different from that in other composts with alkaliphilic⁹, thermophilic, saprophytic and aerobic abilities.

Cite this article: Dobhal, P. and Mishra, S. K., Cultural Study of Fire-fang Isolates of Mushroom Compost, *Int. J. Pure App. Biosci.* **7(3):** 335-340 (2019). doi: http://dx.doi.org/10.18782/2320-7051.7480

Dobhal and Mishra

Int. J. Pure App. Biosci. 7 (3): 335-340 (2019)

ISSN: 2320 - 7051

It normally occurs in the compost prepared from wheat straw/horse manure¹¹ at high temperature to help in degradation of rather complex and recalcitrant organic molecules, especially cellulose, lignocellulose and lignin². As a result of degradation fire-fang produces variety of antibiotics, enzymes, growth regulators, siderophores and organic acids¹⁴. Which make compost very selective for button mushroom where it grew better and remained free from any fungal contaminations¹⁶. Mushroom mycelia also uses the mass of firefang during spawn run and crop production. Consider the above facts of fire-fang in view; a preliminaire study was done on the cultural behaviour of colony forming units of fire-fang in respect of temperature and media.

MATERIAL AND METHODS

The fire-fang was isolated from the four samples of mushroom compost. The sample 1, 2 and 3 were taken at the end of turning 1^{st} , turning 2nd and turning 3rd of Phase 1st compost material, respectively. Sample 4 was taken from Phase II compost. As per the method of serial dilution technique¹, one gram of compost of each 4 sample was suspended into 10 ml of sterile distilled water followed by 10^{-5} dilution strength. One ml of prepared compost suspension was taken from each of 10⁻⁵ dilution strength and poured on the actinomycetes isolation agar medium by pour plate method and allowed to solidify. The poured plates were then incubated at 55±1°C. The colonies of fire-fang were appeared within 48 hours (fig.1) Colonies were than selected on the basis of colony characters and transferred to actinomycetes isolation agar plate with the help of four way streaking method to maintain them in form of pure culture. The purified isolates of fire-fang were assigned their name as FI₁ FI₂ FI₃ FI₄ FI₅ and FI_6 after the temperature at which they were isolated, phases from which they belonged to, samples from them isolated and number of isolates as depicted in the table 1.

Pure culture of all six isolates of firefang FI₁, FI₂, FI₃, FI₄, FI₅ and FI₆, were further visualized under stereoscopic microscope Olympus, SZH 10 to observe their clearer shape, surface and pigment production. Effect of temperature on the growth of above all six isolates of actinomycetes were studied on actinomycetes isolation agar medium at 35±1°C, 45±1°C, 55±1°C with three replications. Two days old culture of actively growing isolates transferred aseptically in the centre of culture media. Inoculated Petri plates were kept at 35±1°C, 45±1°C, 55±1°C and data were recorded on 10th day after inoculation (DAI).

The vegetative growth of six isolates fire-fang was also evaluated on of actinomycetes isolation agar (AIA), starch ammonium agar (SAA), Kenknight & medium Munaier's (KM) with three replications. Ten ml sterilized melted media of temperature 35°C were poured in sterilized Petri plates. The solidified plates were inoculated with two days old culture of actively growing isolates and incubated at $55\pm1^{\circ}$ C. The data were recorded on 10^{th} DAI. All the data were analysed using 2factorial CRD statistical method at 5% level of significance.

RESULTS AND DISCUSSION

Isolation of fire-fang from the mushroom compost

The fire-fang was isolated from the four samples of compost mass that continue to be decomposed at the 55°C- 60°C temperature. Compost sample 1, 2 and 3 were taken at the end of turning 1^{st} , turning 2^{nd} and turning 3^{rd} of Phase I compost, respectively. Compost sample 4 was taken from Phase II compost as shown in the table 1. All isolates of fire-fang were identified on the basis of temperature 55°C at which only fire-fang was appeared, Gram staining and morphological characters. Initially, total 10 colonies were appeared on AIA medium. Out of them, only six colonies as FI₁, FI₂, FI₃, FI₄, FI₅ and FI₆ were found gram positive with white and dry surface (table 2 and Fig 1). However, all isolates were grown into beads like colonies in the broth of AIA. These colonies were joined together and form the circle on the top surface of broth.

Dobhal and Mishra

ISSN: 2320 - 7051

Some beads like colonies were also appeared within the circle, though the colonies would not grow deep in the broth. The isolates were differentiated in circular (FI₁, FI₃ and FI₆) and irregular (FI₂, FI₄ and FI₅) shape. They also produced pale yellow (FI₁) dark brown (FI₂) brown (FI_3 and FI_4) and yellow (FI_5 and FI_6) diffusible pigment (table 1). However, sometimes diffusible pigment in the substrate did not noticed¹⁵. Thermoactinomyces were white and yellow in colour with the production of endospores singly on aerial and substrate mycelium, however, Thermomonospora were appeared as white mycelial colonies on which single spores were formed on sessile or dichotomously branched sporophores⁷. All isolates of fire-fang produced foul smell in the broth. The above characteristics thus enough to confirm that isolates of fire fang were resembled with the characters of thermophilic actinomycetes.

Diametric growth of fire-fang at different temperature

The results of interaction between isolates (FI₁ FI_2 , FI_3 , FI_4 , FI_5 and FI_6) and temperatures (45°C and 55°C) were recorded in table 3, revealed that FI₂*55°C, FI₃*55°C and FI₅*55°C were *at par* statistically with highest 7.7 cm (0.77 cm growth/day), 7.53 cm (0.75 cm growth/day) and 6.6 cm (0.66 cm growth/day) growth as recorded on 10th DAI. As a result, 327.75 %, 318.3% and 266.64% higher growth was achieved in above treatments against the lowest 1.8 cm growth of the AI₄*55°C. Among the six isolates of firefang, AI_3 and AI_2 as depicted in table 3 were statistically at par with 5.33 and 5.29 cm mean growth on the 10th DAI with 0.5cm growth/day and resulted 170.55% and 168.52 % more diametric growth, respectively over to the minimum 1.97 cm diametric growth of AI₄. The temperature also influenced the growth of fire-fang (table 3). Among three temperatures 35±1°C, 45±1°C and 55±1°C, the previous one did not show any growth of thermophilic isolates. However, 55±11°C was found more effective than to that of 45±11°C to be recorded with maximum 6.08 cm average diametric growth of isolates on 10th DAI with 0.61 cm growth/day. On the other hand, 122.61% more average diametric growth of fire-fang was recorded at temperature 55±11°C if calculated over to the temperature $45\pm11^{\circ}$ C. The temperature 45±11°C was supported only 2.73 cm growth with a 0.27 cm increases in growth/day. In the an earlier study thermophilic population became dominant at gradual increase in temperature, which often includes some actinomycetes¹⁷. Jin et al.⁵ actinomycetes called thermophilic for those that grow between 37°C and 65°C but showed optimum growth from 55°C-60°C and moderately thermophilic actinobacteria to thrive at 28°C-60°C with optimum growth in $-55^{\circ}C^{5}$. 45°C The strains of Thermoactinomyces candidus could not grow at 25°C, showed slight growth at 37°C and growth vigour was gradually increased at the 45°C, 50°C, 55°C and 60°C after a week of inoculation⁸. The temperature 55°C -60°C was found optimum for the growth of thermophilic actinomycetes⁴.

Diametric growth of fire-fang on different media

The results of the interactions of isolates and media were depicted in table 4. FI2*KM and FI₃*AIA were recorded with 84.7% and 82% more growth, respectively against FI2*AIA on 10 DAI and consequently showed highest growth rate of 0.48 and 0.47 cm/day. The treatment FI₆*KMM was statistically at par with the treatment FI₂*AIA. However, remaining interactions were showed moderate increase in the growth of isolates ranged from 19.25-63.91% over to that of FI₂*AIA. Among the six isolates, FI₃ and FI₅ were recorded with 4.18 cm (25.9%) and 4.02 cm (21.08%) higher average growth on 10th DAI in comparison to 3.32 cm mean growth of FI_1 . The strains FI_6 and FI₄ were found statistically at par with the strain FI₁. The effects of media were also comparatively tested with the mean growth of isolates and revealed that the starch ammonium agar (SAA) was found one of the best-supported media in which 3.24 cm (0.32 cm radial growth/day) highest average growth of isolates was achieved with 9.83% increases on 10 DAI over to the actinomycete isolation

ISSN: 2320 - 7051

Dobhal and Mishra

Int. J. Pure App. Biosci. 7 (3): 335-340 (2019)

agar (AIA) medium. The effect of Kenknight & Munaier's medium (KMM) was statistically identical with the AIA medium in order to support the growth of isolates. AIA and SAA (ISP 4) were the best medium for supporting abundant growth of actinomycetes isolates¹³.

Table 1: Nomenclature of isolates of fire-fang (thermophilic actinomycetes)							
Name of isolate	Temperature	Name of Phase	Sample No.	Isolate No.	Name		
Fire-fang (F)	Temperature 55°C (T ₅₅)	Phase I	Turning $1(S_1)$	Isolate $2(I_2)$	$FTP_1S_1I_2(\mathbf{FI}_1)$		
			Turning 2(S ₂)	Isolate $2(I_2)$	$FTP_IS_2I_2(\mathbf{FI_2})$		
			Turning 3(S ₃)	Isolate $1(I_1)$	$FTP_{I}S_{3}I_{1}(\mathbf{FI}_{3})$		
			Turning $3(S_3)$	Isolate $2(I_2)$	$FTP_{I}S_{3}I_{2}(FI_{4})$		
		Dhasa II	-	Isolate 3(I ₃)	$FTP_{II}I_3$ (FI ₅)		
		Phase II		Isolate 4(I ₄)	$\mathrm{FTP}_{\mathrm{II}}\mathrm{I}_{4}\left(\mathbf{FI}_{6}\right)$		
	~ ~ ~						

Table 1: Nomenclature of isolates o	f fire-fang (thermophilic actinomycetes)
-------------------------------------	--

F=Fire-fang, T=Temperature P=Phase, S=Sample, I=Isolate and FI= Fire-fang Isolate. An each cfu of fire-fang from turning 1st and 2nd and 2 no. of cfu_s of fire-fang from turning 3rd and 2 no. of cfu_s from phase 2 were finally assigned with names FI₁, FI₂, FI₃, FI₄, FI₅ and FI₆ respectively.

Table 2. Worphogenic characters of fire-rang isolates								
Isolates	Gram reaction	Colony Morphology						
		Shape	Chromogenesis	Diffusible Pigment	Surface			
FI_1	+	Circular	White	Pale yellow	Dry			
FI ₂	+	Irregular	White	Dark brown	Dry			
FI ₃	+	Circular	White	Brown	Dry			
FI_4	+	Irregular	White	Brown	Dry			
FI ₅	+	Irregular	White	Yellow	Dry			
FI ₆	+	Circular	White	Yellow	Dry			
	FI1 FI2 FI3 FI4 FI5 FI6	$\begin{tabular}{ c c c c } \hline Solates & Gram reaction \\ \hline FI_1 & + & & \\ \hline FI_2 & + & & \\ \hline FI_2 & + & & \\ \hline FI_3 & + & & \\ \hline FI_4 & + & & \\ \hline FI_5 & + & & \\ \hline FI_6 & + & & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c } \hline Shape & \hline \\ \hline Shape & \hline \\ \hline FI_1 & + & Circular \\ \hline FI_2 & + & Irregular \\ \hline FI_3 & + & Circular \\ \hline FI_4 & + & Irregular \\ \hline FI_5 & + & Irregular \\ \hline FI_6 & + & Circular \\ \hline \end{array}$	solatesGram reactionColony M FI_1 +ShapeChromogenesis FI_2 +CircularWhite FI_3 +CircularWhite FI_4 +IrregularWhite FI_5 +IrregularWhite FI_6 +CircularWhite	solatesGram reactionColony Worphology FI_1 +ChromogenesisDiffusible Pigment FI_2 +CircularWhitePale yellow FI_3 +CircularWhiteDark brown FI_4 +IrregularWhiteBrown FI_5 +IrregularWhiteYellow FI_6 +CircularWhiteYellow			

"+" = gram positive

Table 3: Effect of temperature on fire-fang isolates

	Diametric growth of fire-fang (cm)					
Isolates	45°C		55°C		Mean of strains	
	Growth Growth rate/day		Growth	Growth rate/day	Growth	Growth rate/day
FI ₁	2.53	0.25	6.40	0.64	4.47	0.45
	(40.55)		(255.53)		(126.75)	
FI_2	2.87	0.29	7.70	0.77	5.29	0.53
	(59.44)		(327.75)		(168.32)	
FI ₃	3.13	0.31	7.53	0.75	5.33	0.53
	(73.88)		(318.30)		(170.35)	
FI_4	2.13	0.21	1.80	0.18	1.97	0.20
	(18.33)		(0.00)		(0.00)	
FI ₅	2.96	0.30	6.60	0.66	4.78	0.48
	(64.44)		(266.64)		(142.47)	
FI_6	2.80	0.28	6.43	0.64	4.62	0.46
	(55.55)		(257.19)		(134.36)	
Mean of temperatures	2.73	0.27	6.08	0.61		
	(0.00)		(122.61)		-	-

Values in parenthesis represent per cent increase growth against the lowest growth of isolates CD at 5%

Isolate :0.78

Temperature :0.46

Isolate x Interaction :1.11

Dodnai and Mishi	ra	Int. J.	Pure App. E	siosci. 1 (3):	: 335-340 (2	.019)	155IN: 2	520 - 7051	
Table 4: Effect of media on fire-fang isolates									
	Diametric growth of fire-fang (cm) on different media								
Isolates -	AIA		SAA		KM		Mean of strains		
	Crowth	Growth	Growth	Growth	Growth	Growth	th Crowth	Growth	
	Glowin	rate/day	Glowin	rate/day	Glowin	rate/day	Glowin	rate/day	
FI ₁	3.20	0.32	3.46	0.35	3.30	0.33	3.32	0.33	
	(23.1)		(33.11)		(26.95)		(0.00)		
FI_2	2.60	0.26	3.96	0.40	4.80	0.48	3.79	0.38	
	(0.00)		(52.36)		(84.70)		(14.16)		
FI_3	4.73	0.47	4.26	0.43	3.56	0.36	4.18	0.42	
	(82)		(63.91)		(36.96)		(25.90)		
FI_4	3.83	0.38	3.46	0.35	3.10	0.31	3.46	0.35	
	(47.36)		(3.11)		(19.25)		(4.22)		
FI_5	3.76	0.38	4.16	0.42	4.13	0.41	4.02	0.40	
	(44.66)		(60.06)		(58.91)		(21.08)		
FI_6	3.23	0.32	3.86	0.39	2.93	0.29	3.34	0.33	
	(24.26)		(48.51)		(12.71)		(0.60)		
Mean of media	2.95	0.30	3.24	0.32	3.02	0.30			
	(0.00)		(9.83)	(2.37)					

 $\mathbf{D}^{*} = \left(\mathbf{T} \right) \cdot 225 240 (2010)$

IGGNI 2220 7051

Values in parenthesis represent per cent growth against the lowest growth of isolates

CD at 5% Isolate : 0.25 Temperature : 0.18

D.I.I. . I. . . . J.M.C.I

Isolate x Interaction : 0.45

Fig. 1: Isolates of Fire-fang

CONCLUSION

Six isolates of fire-fang FI₁, FI₂, FI₃, FI₄, FI₅ and FI6 were characterized and further evaluated on different temperatures and media. It was found that all of them characterized with white, dry, compact powdery surface with ray type wrinkles and showed aerial mycelium composed of more or less erect filaments. Some isolates were also formed concentric rings with rhythmic growth on actinomycetes isolation agar medium at 55°C media. All isolates of fire-fang were Gram (+) and diffused pale yellow to dark brown pigments in the growing medium of AIA. They were also produced foul smell. Among three temperatures $35\pm1^{\circ}$ C, $45\pm1^{\circ}$ C and $55\pm1^{\circ}$ C, the previous one did not show any growth of

thermophilic isolates. However, $55^{\circ}C\pm1$ was found more effective than to that of $45^{\circ}C\pm1$ on which FI₂, FI₃ and FI₅ were grown very fast. The growth performance of FIs was also varied with different growing medium. The interactions FI₂*KM and FI₃*AIA, media SAA and isolate FI₃ and FI₅ were found best in order to support fast growth. The present work may support further to the study on the effect of fire-fang on the quality and productivity of compost of button mushroom.

Acknowledgement

First author of this manuscript is grateful to the Department of Plant Pathology and In-charge Mushroom Laboratory for providing physical facilities to conduct the research work.

Int. J. Pure App. Biosci. 7 (3): 335-340 (2019)

Dobhal and Mishra

- REFERENCES
- Beffa, T., Blanc, M., Lyon, P. F., Vogt, G., Marchiani, M., Fischer, J. L. and Aragno, M., Isolation of Thermus strains from hot composts (60 to 80 degrees C). *Appl. Environ. Microbiol.* 62(5): 1723-1727 (1996).
- Crawford, D. L., Biodegradation of agricultural and urban wastes. *In:* Goodfellow, M., Williams, S. T., Mordarski, M., (Eds): Actinomycetes in Biotechnology, Academic Press, London. (1988).
- Dobhal, P., Kaur, M., Mishra, S. K. and Kushwaha, K. P. S., Isolation of Actinomycetes from mushroom compost abs (CP-P-42). Conference Proceeding. National Symposium on Mushroom Trends and Innovations in Mushroom Science, Directorate Mushroom Research, Chambaghat Solan. April 27-28. Pp 99 (2017).
- 4. Fergus, C. L., Thermophilic and thermotolerant molds and actinomycetes of mushroom compost during peak heating, *Mycologia*. **56(2)**: 267-284 (1964).
- Jin, X., Xu, L. H., Mao, P. H., Hseu, T. H. and Jiang, C. L., Description of Saccharomonospora xinjiangensis sp. nov. based on chemical and molecular classification. *Int. J. Syst. Bacteriol.* 48: 1095–1099 (1998).
- Kleyn, J. G. and Wetzler, T. F., The microbiology of spent mushroom compost and its dust, *Can. J. Microbiol.* 27(8): 748-753 (1981).
- Korn-Wendisch, F., Rainey, F., Kroppenstedt, R. M., Kempf, A., Majazza, A., Kutzner, H. J. and Stackebrandt, E., *Thermocrispum* gen. nov., a new genus of the order *Actinomycetales*, and description of *Thermocrispum municipale* sp. nov. and *Thermocrispum agreste* sp. nov., *Int. J. Syst. Bacteriol.* 45: 67-77 (1995).

- Kurup, V. P., Barboriak, J. J., Fink, J. N. and Lechealier, M. P., *Thermoactinomyces* candidus, a new species of thermophilic actinomycetes, *Int. J. Syst. Evol. Microbiol.* 25(2): 150-154 (1975).
- Lacey, J. and Dutkiewicz, J., Methods for examining the microflora of mouldy hay, *J. Appl. Bacteriol.* 41: 13-27 (1976).
- 10. Lacey, J., Actinomycetes in composts, Ann. Agric. Environ. Med. 4: 113–121 (1997).
- 11. Lacey, J., Actinomycetes in soils. composts and fodders. In: Skinner, F. A., Sykes, G., (Eds): Actinomycetales: Characteristics and Practical Importance Applied *Bacteriology* (Society of Symposium Series No. 2), Academic Press, London. 231-251 (1973).
- 12. Mc Carthy, A. J. and Cross, T., A Taxonomic Study of *Thermomonospora* and Other Monosporic Actinomycetes, J. Gen. Microbiol. **130:** 5-25 (1984).
- Mertz, F. P. and Yao, R. C., Sccharopolyspora spinosa sp. nov. isolated from soil collected in a sugarmill run still. Int. J. Syst. and Evo. Microbiol. 40(1): 34-39 (1990).
- Palaniyandi, S. A., Yang, S. H., Zhang, L. and Suh, J. W., Effects of actinobacteria on plant disease suppression and growth promotion. *Appl. Microbiol. Biotechnol.* 97: 9621–9636 (2013).
- Singh, R. and Kapoor, V., Biochemical characterization of thermophilic actinomycete (*Streptomyces* sp. MSC702) from mushroom compost in India, *Int. J. Curr. Biotechnol.* 1(10): 1-7 (2013).
- Stanek, M., Microorganism inhabiting mushroom compost during fermentation. *Mush. Sci.* 8: 797-811(1972).
- 17. Tendler, M. D. and Burkholder, P. R., Studies on the thermophilic actinomycetes I. Methods of cultivation, *Appl. Microbiol.* 9(5): 394-399 (1961).